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Properties of neural networks storing spatially correlated 
patterns 

R h i  Monasson 
Labraloire de Physique ?hLorique de I'Emle Normale Sup&rieuret, 24 Rue lhomond, 
75231 Paris Cedex 05, France 

Received 26 February 1992, in final form 21 April 1992 

AbslrncL We study the behaviour of a feedfonvard neural network supplied with spatially 
organized data. This inner struclure is laken inlo account by a matrix C,,, whose 
cuefficienu equal the average mrrelalion between two pixels i and j of the input 
pattems 'me storage capacity CI is computed as a function d lhe required stability and 
of the eigenvalues of C. We propose a geometrical transfarmalion allowing an intuitive 
interprelation of these ~ s u l l s .  Numerical simulations using real and tinary pallems 
show a very good agreemenl with the theory. Finally, we analyse lhe synaptic muplings 
Eomlalions resulting from the lraining of lhe network with SfNCtUred pattems. Focusing 
on cxponentially decreasing currelalions in one and hvo dimensions, we find lhat thcy 
exhibit a 'Mexican hal' profile, the excilalary centre size of which depends on 01. 

1. Introduction 

For the last few years, storage capacities of neural networks have been intensively 
studied. Thanks to statistical mechanics tools developed by Gardner [l], many dif- 
ferent networks have been investigated, ranging from the simple perceptron [2] to 
multilayered neural nets [3]. Besides the network architecture, the nature of their 
couplings (discrete or continuous) [4] and the number of activity levels of the units 
[5] have been shown to influence their storage properties. 

From another point of view, we may ask the following question. Considering a 
particular network, how will its capacity and its synaptic weights distribution depend 
on the internal structure of the data? Such internal correlations would for example 
be present if we try to store binary images and their corresponding outputs in a 
fixed neural network. Until now, the statistical physics analysis has been restricted to 
patterns without internal correlations between the different pixels. In other words, 
the notion of distance separating the input neurons was meaningless. This is the 
problem which we solve in the present paper. 

Here we consider a perceptron-like neural network. We introduce internal corre- 
lations inside the input patterns and compute its storage capacity. It is natural that 
the internal correlations in patterns in turn induce correlations in the coupling ma- 
trix. We are also able to determine these induced correlations exactly. We consider 
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the hetero-associative case, in which the output is chosen independently of the input 
pattern. 

In this paper, two main results will be derived. Firstly, the storage capacity 
remains unchanged whatever the inner structure of the input pattems. Secondly, 
this spatial structure induces interesting correlations between the synaptic weights: 
two couplings are positively correlated when they are close enough and become anti- 
correlated when the distance separating them increases. One important finding of the 
calculations concerns the duality between correlations in the patterns and those in 
the couplings. In fact, the calculations which we will present solve, at the Same time, 
the problem of correlated patterns and the case of storage with correlated couplings 
(for uncorrelated patterns). 

2. Presentation of the problem 

21. General definitions 

We consider a single-layer network including N binary neurons Si, i = 1 , .  . . , N, 
and an ouput U .  The couplings J ,  between units Si and U are continuous. The 
output value is computed following the classical rule 

u = sign ( 1 c J ,  s i )  

Let us now choose an N binary components vector E and a corresponding output U. 
We say that the pair (c, U )  is stored by the network if 5 is mapped onto U: 

2- J i E ;  > 0 n i  
We also require that noisy versions 11 of E (i.e. having a large overlap with c) should 
be correctly classified (i.e. mapped onto U) as often as possible (see section 3.1). A 
common way to incrcase this robustness is to impose a stability IC > 0 [1,7]. The 
formula (2.2) becomes 

Fbr a training set ( E ” ,  U”), p = 1 , .  . , , P, we define its size as a = P / N .  In the 
large-N limit, the critical capacity C X , ( K )  is the largest size below which there exist 
with probability one, couplings { J )  fulfilling the condition (2.3) for each 1. The 
storage capacity a c ( ~ )  is a self-averaging quantity, and thus does not depend on the 
particular choice of the training set but only on its statistical distribution. 

2.2. The auto-correlntion niotrix 

We impose a probability distribution on the input patterns as follows: 
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where the bar denotes an average over this distribution. The first equation means 
there is no external bias, which occurs, for example, when a pattern and its Opposite 
are drawn with the same probability. The Kronecker symbol in (2.4) implies that 
patterns are chosen independently of each other. The matrix C contains infOIma- 
tions about correlations inside one pattern ( and we choose it to obey the following 
requirements: 

I,. 
- 
[ f  = i va.  ,-. G. ,  = 

I ,  

Cij depends only on the distance li - jl between the neurons i and j because of 
translational and rotational invariance of the pattern (. No restriction is imposed on 
the dimension of the input space, and subscripts may be considered as vectors. 
C must be a positive matrix: Cij ziCijzj = [Xi zi.5i]2 2 0 VZ. 

rhe common rase with unbiased random patterns B given hy C-. = ~ 5 : ~ .  
In the following we will call A, ,  A,, . . . , A N  the eigenvalues of C. When N tends 

‘ J  ‘ J ~  

to infinity, we note that 

The conditions (2.4) do not actually define the whole distribution of probabilities 
’P(0 from which the patterns ( are drawn. Further calculations based on the replica 
method show however that one needs only the first two moments of P in order to 
compute the critical capacity a,, provided that the higher connected moments satisfy 
clustering conditions 

(2.6) 
connected 

Ci,Ci2...Cik - r , ~  ( N - w )  
il ,;2,...,ik 

where the T’s are some constants. 
Any matrix C may be thus obtained with Gaussian patterns following the law 

(2.7) 

Alternatively one may choose binary patterns. For instance, a one-dimensional king 
mode! a! temperature Twill lead to cquilibrium configurations distributed as in (2.4); 
(2.6) with 

l i - j l  
c.. : J  = [ tanh  (+)I 
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23. The case of exponentially decreusing correlurions 

Let us first remark that inner correlations may result from a preprocessing stage. 
Previous studies have shown that neurons connected to a fully random input layer but 
with overlapping receptive fields will be synchronized [6]. Such induced correlations 
are positive and decrease with the distance separating the processing units. They may 
be taken into account as shown in section 2.2. 

Moreover, the above description of the auto-correlation matrix is valid whatever 
the input space dimension, and general results for any C will be derived in section 2. 
Then we focus on patterns presenting patches of typical sizes L .  Defining z = 
exp ( - l /L) ,  we consider the matrix 

(2.9) c.. = zii-ji. 
$3 

The parameter z (0 < z < 1) is the correlation strength inside one input pattern. 
When z equals zero, we recover the classic case of independent patterns and P (Ei) = 
$5(& + 1) + i 6 ( c i  - 1). As 2 tends to 1, only two patterns remain present: the one 
with all parts equal to one, and its opposite. The patterns are indeed drawn on a 
circle (or a torus) so as to ensure periodic boundaries conditions. 

In section 4.1, we apply the general theory to one-dimensional patterns verify- 
ing (2.9). The more realistic case of two-dimensional inputs presenting the Same 
covariance matrix (but for continuous patterns) is investigated in section 4.2. 

3. General theory for any correlation matrix 

3.1. Anaiyrical calculation of the critical capucily 

We follow the now classic method introduced by Gardner [l]. For a training set 
(c”, U”), we define the fraction of the space of the couplings which store the patterns 
with the stability K :  

where we have imposed spherical constraints on the synaptic weights. As In V is 
an extensive quantity, one assumes it becomes self-averaging in the large-N limit. 
We then compute its average over the patterns distribution using the replica- 
symmetric approximation 

1- 1 ”  1 
x l n V = - - q q + s b + i L +  2 - I n ( z T ) - -  2 

where 

(3.3) 
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and the two order parameters q , s  are defined as follow. Let ((. ..)) be the average 
over the coupling J storing perfectly the P patterns. The order parameters are 
typical overlaps between these solutions: 

.. 
ij 

(3.4j 
1 

s =  -ccij ( ( J J , ) ) .  
i j  

6, S are Lagrange parameters enforcing constraints (3.4) and ii ensures the normal- 
ization of J. These five parameters are found by solving the stationarity equations 
associated with (3.2). In the usual uncorrelated case, Cij = S j j  and s = 1. For more 
complicated correlation matrices, the critical capacity will be reached in the limit of 
q equals s, i.e. when the space of suitable couplings shrinks to a 'single point'. 

The analysis of the saddle-points equations is not easy below the critical line 
.(a,) when the eigenvalues distribution is not explicitly given. In section 4, we give 
some results for the particular choice Cij = &-'I concerning the evolution of the 
order parameters q and s towards their critical common value sC. 

We therefore restrict our analysis to the critical line %(a,) where the three 
Lagrange parameters diverge and the stationarity equations simplify to 

where uc is a function of I( and sc defined by 

and monotonously increases from 0 (K = 0) to 00 ( K  = 00). 

For zero stability, the critical capacity is always equal to cyc = 2, whichever 
correlation matrix we choose. This is not surprising since correlations do not destroy 
the linear independance of any subset of N patterns taken among the P patterns. 
They are thus in general positions and the argument of Cover [SI is still valid. The 
critical d u e  of q and s is 

which is always less than 1. A simple geometric derivation of this result will be given 
in the next paragraph. 

The stability appears in (3.5) only through K/&.  This may be explained by 
calculating the probability that a random noisy version q of a given stored pattem 
(for instance E ' )  is mapped onto the right output ( U ' ) .  This probability depends 
of course on the overlap between 11 and its reference and also on the pure pattern 
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stability A (=-&J.(') [7]. One can compute in the limit a -+ Q J K )  the distribution 
of A [7]: 

As "pared with the usual uncorrelated case Ci, = 6ij and sc = 1, this formula 
indicates that the effective stability of the training set is K / &  rather than K [7]. 
One can verify that near a, 2 

(3.9) 

is independent of C. Thus, in the critical capacity limit, the presence of correlations 
inside the training patterns should not modify the ability of the network to classify 
correctly noisy versions of the stored data. 

All results have been derived here under the replica-symmetric assumption. It is 
pLy'.Lu,,y J""L1L1CY "y U&& c u 1 L " ~ A ' L y  U, L1,G J U V J C L  U, "CCLU'J Jlullllg Y L r  1 pa.L,G,,o 
on the Ndimensional sphere. Moreover, we have analytically checked the stability 
of the mean-field solution with respect to small deviations of the order parameters 
2 , d " ,  $'*,sa, q"* around the symmetric saddle point (Q < b are replica indices 
running from 1 to n and the limit n - 0 is taken afterwards) [9]. 

Extending the analysis of the case C,, = 6,, [l], we have found two types of 
eigenvectors for the second-derivatives matrix of g = am. It turns out that 
there are 5 eigenvalues related to the longitudinal fluctuations and that the 5(n - 1) 
eigenvectors symmetric under interchange of all but one of the indices give five 
more eigenvalues which are indeed degenerate with the longitudinal ones in the limit 
n + 0. 

An instability may in fact arise from the transverse fluctuations of g. They give 

..L...:lnll.. :.."*:Carl l... 4.- ^^^ ..̂ ., :... - F  *L^ "..Le". ^C ..n..*--" .I.̂ D ...... ~ - - "  

G g  eioenviliwr (each nnp being - ?).fe!d degenerate) whcse pr~finct q~& -' a-..."."-" \-I-- "1." 

(3.10) 

The stability of the replica-symmetric solution requires that no sign change of the 
eigenvalues occurs between a = 0 and oi = a c ( ~ ) ,  Using definition (3.6), we find 
p ( 0 ,  K )  = -1 and 

proving that the critical line o i , ( ~ )  lies in the domain of stability of the symmetric 
saddle point. 
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3.2. Geomefrical interpretdon 

Reaching a geometrical understanding of the previous analytical calculations is not 
obvious, since correlations involved here cannot be interpreted as easily as in the 
uniform-bias case. ’RI cope with this dificulty, we eliminate the self-correlations inside 
each pattem by diagonalizing the C matrix and apply the inverse transformation to 
the couplings vector so as to leave the storing prescriptions (2.3) unchanged. We are 
thus led to a strictly equivalent problem where we have P = a N  unbiased random 
patterns (€*,up) in a perceptron whose synaptic vector J is constrained to lie on 
the Ndimensional ellipsoid E: 

(3.12) 

We seek the critical capacity of this network and compute the fraction of couplings 
storing all the (€”,a”) with a stability K defined as 

(3.13) 

Calculations with the replica method on this model can be done easily and lead of 
course to the Same result as before. Let us now relate this problem to the usual 
Gardner analysis. 

Tb each vector J belonging to E, we associate the vector J‘ pointing in the Same 
direction and lying on the sphere S with radius 0 by 

I J‘ = 4 - m J  
Reciprocally, any J’ on S defines one single Yector J on E by 

1 J =  4- J‘ ‘ 

(3.14) 

(3.15) 

The zero stability case is easily solved thanks to this very simple bijection between 
S and E. Let us indeed consider P = a N  random unbiased patterns + = ~ ” ( p  

on S. Since proportionality factors in (3.14) and (3.15) are always strictly positive, 
finding J on E storing all the patterns is equivalent to finding J’ on S satisfying the 
same property. Therefore the storage capacity is always ac = 2 [l, 81, regardless of 
the matrix C, i.e. the shape of the ellipsoid. When a reaches a<, there remains, 
to leading order in N ,  only one vector J; verifying J A  . q” > 0 Vp. Then (3.15) 
defines ‘one single’ Jo on E ,  whose squared norm is the critical parameter sc. When 
averaging over the training set, J; is an isotropic distribution on S and we recover 

We now analyse the positive stability case. Let us assume as before that we have 
drawn lots for P = a N  unbiased patterns 7’ = a’€” on the sphere S with a < 2. 
There exists J;  on S maximizing the stability ~ ~ ( 0 )  of the patterns: 

(3.7). 



3708 R Monasson 

which is given'by 111. The vector Jo on & obtained from (3.15) leads to a stability 

(3.17) 

Unfortunately, no is lower than the optimal stability IC defined in (3.13). Let us indeed 
consider a small shifting d J  on the surface of E from Jo (see figure 1). Constraint 
(3.12) is described by 

(3.18) 

During this slight movement, the stability has increased by dn  from its initial value 
K ,  with 

(3.19) 

We see that dn may be strictly positive provided that the auto-correlation matrix is 
not proportional to the identity. So knowning n c ( a )  provides us only with a lower 
bound for K when averaging (3.17) over training data: 

(3.20) 

F!g'" L ?he SphC'e s and !hP e!!jproja r aye drawn in !he case N = 2; Pa!!elml q' 
and q2 rely on the cone of slabilily k whose axis is the oplimal vector J: .  A small 
shifting d J  from the prolonged vector J o  may improve the stabilily of PL though the 
angle between JO + d J  and q' increases. 

These arguments may be extended to the case Ti # 0. If the inputs are biased with 
a uniform bias RL, the connected self-correlation matrix becomes Cy = (1 - m 2 ) s i j .  

from S thanks to a homothetic reduction of ratio equal 
(3.18) implies that d~ = 0 and we find [I] 
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3.3. Study of he induced Jynaptic structure 

We analyse here the influence of the data spatial structure on the synaptic vectors 
storing perfectly P = a , N  inputs patterns ( K  > 0). We restrict ourselves to the crit- 
ical stability line since calculations become simpler: all quantities no longer fluctuate 
around their mean values ((. . .)). As we deal in this paper with hetero-associative 
storage, we have obviously 

- 
((Ji)) = 0 . (3.22) 

However, inside one pattern, the pixels ti and t j  are not independent and lead 
to correlations between the couplings J, and J,. One easily gets (for instance by 
inserting an infinitesimal extemal field h acting on J in (3.1) and differentiating In V 
with respect to hi and h j )  

- 

(3.23) 

where the mefficient v, is given by (3.6). 

reflect the internal structure of the patterns 
Thus, for a small number of patterns, the correlations between synaptic weights 

( ( J i J j ) )  = cij (a, + 0 ) .  (3.24) 

On the other hand, in the saturation limit, the structure of the couplings is given by 
the inverse matrix 

( ( J i J j ) )  = sc (C-l);j (Qc + 2)  (3.25) 

whereas (3.23) interpolates continuously between these two behaviours in the finite 
stability range. 

These results are applied to exponentially decreasing correlations in one- and 
two-dimensional patterns in the following parts. 

3.4. Modified Hebb rule for se[f-correlated pattems 

For uncorrelated patterns and small enough training sets ( U P  , C p ) ,  an efficient storage 
rule is the Hebb rule, corresponding to the synaptic vector 

(3.26) 

Li is nothing but the average Over the training set of U’’(:, namely the ith mm- 
ponent of pattern p.  Howcver, in our present case, correlations between different 
components of the input data suggest us that a given coupling Ji should take into 
account not only the i th  pixel of each input pattern but also its neighbours. We are 
thus led to change rule (3.26) into 

Ji = ICij L j  
j 

(3.27) 



3710 R Monasson 

where h' is a linear kernel assumed to be translationally invariant. As a result, this 
simple transformation also modifies the correlations among the components of the 
synaptic vector 

(3.28) 

ensuring the correct normalization Ji' = 1. 
We choose IC optimally thanks to a signal-over-noise analysis [ll]. With Gaussian 

inputs, the distribution of the stability u'J. t 1 / G  of a training pattern follows a 
normal law whose mean nz and variance IJ are 

(3.29) 

m.e prohahi!ity f (  J;) that this pattern is stored (i&?: hag a positive stabijity! 
m / f i  and is of course all the more important when this signal-over-noise ratio is 
large [ll]. It is maximal for Ii = C-' and f ( C - ' )  = H(-l /&) is independent 
of C as the critical capacity a, = 2 obtained in section 3.1. 

Instead of optimizing the above quantity f(K), let us restrict our attention now 
to matrices IC ensuring only 

f (K)  = g (3.30) 

where g is a given positive number lower than ,Y(- l / f i ) .  But we seek the largest 
possible mean stability m for our given pattern. Maximizing m under the constraint 
(3.30) gives 

Ii7 = (c -j- VI)-' (3.31) 

where U is obtaincd when inserting the above result into condition (3.30). From 
formulae (3.28) and (3.31), we recover the behaviour contained in (3.23). It is quite 
remarkable that the simple storage prescription described here agrees qualitatively 
'I*,,,, ULG LLlYCLl LIIUIC cUlr,p"ML'" ICpllL'l calL"ldl l"II> ""LK "I 3CCIL"II 3.2. 
..2.L A... _..^I. ----I :-.....A -....I :..- ....,-..,... A-..- :.. "...,.:-* ? 7 

4. Application to exponentially decreasing correlntions 

We now apply the previous theory to some particular cases of correlation matrices 
(see section 2.3). The simple choice of exponentially decreasing correlations is also in 
good agreement with some experimental fits of natural images [13]. We consider one- 
dimensional patterns for which all calculations can be done analytically and lead to 
interesting features, mainly concerning the synaptic correlations. n e  bidimensional 
case is more realistic and gives roughly the same results. 
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4.1. One-dimensional patterns 

According to section 2.3, we consider the correlation matrix (2.9). When N grows 
to infinity, the distribution of its eigenvalues become a continuous function of 4 E 

~ 

[O, 2n]: 

1 - 2 2  
1 - 2 z c o s ~ + 2 2 '  

Following notation of (2.5), the average of any function f over the eigenvalues is 

and we have for instance 

(4.3) 

At the saturation limit (a, = 2), the couplings correlations are related to the 
inverse matrix 

which exhibits one positive centre (i = j )  surrounded by two negative peaks (i = 
j f 1). The surprising existence of anti-correlations between the synaptic weighs 
appears clearly in the finite-stability range (0 < ac < 2). From (3.23), we get 

where 

Thus, two couplings are positively correlated if the distance separating them is lower 
than a characteristic length c and negatively correlated otherwise (see figure 2). 
Synaptic correlations look like the well known 'Mcxican-hat' profile, including a pos- 
itive excitatory centre and negative inhibitory flanks. We will cnmment on this point 
in section 4.3. 

Using the eigenvalue function (4.1), the saddle-point equations (3.5) may be solved 
numerically. The evolution of the optimal stability K as a function of a is shown on 
figure 3. We see it is a decreasing function of z for fixed a. It vanishes for I = 1 
since the two remaining patterns (+ ' . +) and (- . . . -) are opposite and thus cannot 
be mapped independently onto random outputs. 
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Figure 2.dimensional case: synaptic 
profiles (( Ji Jj)) as a function of the dis- 
tance i - j for I = 0.8. The S i  (I of the 
training set are equal lo 0.05, 0.3 and 1.75 
and the corresponding values of vs are 16.64, 
1.49 and 0.016 respectively (see (3.24)). As 
(I increases, the camlalions curves inlerpo- 
late smoothly beween C,j ( 0 1 ~  = 0) and 
(c-')i> (ac = 2). 
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0 0  0 5  1 0  1 . 5  2 0  
aIPha 

Figure 3. The oplimal slabilily K as a funclion of the Size U for z = 0 (-), 
n ". 4 [. . . . . .I, S.5 [- . ->, 8.8 (- - - - )  nad G.9 [- - -1. N a p  !ha! a!! ai lvps  end in 
a, = 2 lor zero slabiliry and Uial K is a decreasing function o l  z lor given U (see 
figure 6). 

We have also studied the evolution of q and s as functions of the size a for 
different z and zcro stability. In this case, the three Lagrange parameters q,3.,1? 
appearing in (3.2) may be eliminated and we find two implicit equations for q and s 

ana 

I 4" f l - r Z \ l  
I 

The critical parameter sc = (1 - z2)/(1 + z2) is obtained when a - 2. For I = 0, 
(4.8) gives s = 1 and we recover the classical saddle p i n t  equation for q in (4.7). 

Figure 4 displays the curves s ( a ) , q ( u )  for several values of I. The parameter 
q ( a )  may have a maximum at a < 2 but  s - q always decreases with a. This may 
be cxplained thanks to geometrical arguments exposed in section 3.2. Formula (3.4) 
tells us that q is nothing hut the mean overlap between two synaptic vectors storing a 
given training set. When increasing a, the volume of suitable couplings shrinks and 
the typical angle between the two solutions decreases. However, the variations of s 
prove that their norms decrease too. Thus, if the ellipsoid is flat enough, i.e. if z' is 
sufficiently large, one can gct non-monotonous q-functions as shown on figure 4. 

4.1.1. Numerical siniulalions. We have checked our analytical predictions in one 
dimensiun with Gaussian patterns following :he distribu:ion I3w (2.7). Since we are 
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0 0  0 5  1 0  1 5  2 0  
alpha 

Figure 4 ?he CUNes 9 ( a )  and s ( a )  for xveral values of lhe "elation slrength z = 0 
(-), 0.3 ( . . . . .), 0.5 (- . -) and 0.8 (- - -). Nole the presence of a m i m u m  at 
U < 2 for 9 at suficiently large 2 .  The quantity s - q is a decreasing function of a. 
At critical capacity ac = 2, a and q are both equal IO ( 1  - z2)/(1 + z2). 

interested in evaluating the optimal stability x ( a ,  z) of a single-layered perceptron, 
we have resorted to the so-called Minover algorithm. According to the notations of 
reference [lo], there arc three relevant parameters: 

(i) The lower stability c: whcn updating J ,  the algorithm does not care about the 
norm of the synaptic vector. It stops as soon as the scalar product between J and 
each pattern becomes greater than an  arbitrary bound c. Thus the optimal stability 
is reached in the limit c - M and the errors due to finite c are larger since a 
approaches 2. A good estimate of the accuracy of finite c results is given by the 
performance guarantee factor A (see [lo]) which satisfies x(c) < .(CO) < A K ( c )  
for each sample. A is easily computed Cram the norm of the synaptic vector and the 
number of running steps. 

(ii) The number T of samples: the algorithm runs for one given training set and 
we must average the resulting stabilities over the statistical distribution of the self- 
correlated patterns. All the data we present here have been obtained with 100 < T < 
1ooO. The error bars take into account these statistical errors and the uncertainty 
related to A. 

(iii) The size of the input layer N: this parameter influences upon the mean value 
7E and the width of the distribution of the stabilities ~ ( a , z )  for different training 
sets. Attempts with differcnt sizes ( N  = 100,200,300) show a weak dependence of 
K with respect to N (less than the error bars due to finite c )  for Gaussian patterns. 
We present here results obtained with N = 300. 

In figure 5, we show the result of the simulation .(a) for z = 0.8 and compare 
it with the usual 3: = 0 case. In figure 6, we display the optimal stability n at a = 0.5 
(full curve). Simulations have been pcrformed [or different correlation strengths 
I = 0.2, 0.4, 0.6, 0.8 and 0.9. There is an excellent agreement with the theoretical 
predictions. 
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\ \ ' .  i 

0 5  1 0  1 5  2 0  
alpha 

Figure 5. The optimal stability as obtained from numerical simulations with Ihe Minover 
algorithm. The broken C U N ~  is lhe usual slability ablained with uncorrelated patlerns 
(2 = 0). ?%e lull curves are theoretical predictions for z = 0 5  and T = O:& The 
pain15 associated with Ihe two curves indicale the resulls found with k ing  and Gaussian 
patterns rapcclively. 

parameter x 

Figure 6 l l w  optimal stability a i  fixed a = 0.5 BS a function of the mrrelalion strength 
and he IPSUIIS of lhe numerical simulations with Gaussian patterns (see lex1 for details). 
l he  ful l  CUNC shows lhcorctical prcdiclions. The broken C U N e  is the lower b u n d  
oblained from (3.20). The p i n l s  indicate the results of the numerical simulations. 

. 

Another theoretical provision, the importance of which has been already stressed 
in section 2.2 is that the storage propertics depend only on the first two moments of 
the patterns distribution. This remark stems from replica method calculations and is a 
generalization of the well known equivalence between Gaussian and binary patterns, 
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for instance in the Hopfield model [12]. 
'Ib verify this statement, we have simulated the storage of non-Gaussian patterns. 

From a practical point of view, we have considered a one-dimensional king lattice 
with N spins described by the Hamiltonian 

(4.9) 

Equilibrium configurations at temperature T will satisfy the law (28). We gen- 
erate the patterns through a Monte Carlo simulation of this Ising model. We have 
carried out simulations with the Minover algorithm for I = 0.5. Figure 5 displays the 
numerical results and their very good agreement with the theoretical curve. More- 
over, we have seen that important finite-size effects are present up to sizes equal to 
N = 500 as soon as z increases. They are due to the corrective terms (2.6) which 
diverge quickly when 2' -+ 1. 

4.2. Bidimensional purrems 

We now consider bidimensional images E ;  where the vector i is taken continuous for 
simplicity of calculation. Considering two pixels i and j, they are spatially correlated 
with 

(4.10) 

L is the characteristic length of the inner correlations and the right-hand side coef- 
ficient ensures that Cij tends to a(; - j) when Z vanishes. However, as soon as L 
is strictly positive, it only defines a unit of distance for the continuous input patterns. 
Without loss of generality, we choose L = 1 in the following. 

The matrix (4.10) is easily diagonalized by means of a Fourier transform, and h 
the momentum space g thc corresponding eigenvalues are 

(4.11) 

Inserting this ;eigenvalue distribution in (3.23), we obtain the correlation function 
between two'4naptic weights separated by a vector +: 

(4.12) 

where Ja is the first-kind Bessel function of ordcr zero. We show in figure 7 some 
typical curves given by (4.12). 

Our analytical results applied to other types of spatial correlations may lead to 
the same 'Mexican-hat' profile. For instance, let us replace (4.11) by 

where L is a cut-off length. The corresponding spatial correlations are given by 

c..=cL(li-jl)= K o ( l i - j l / L )  (4.14) v 
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Figure 7. Bidiinensional wse: mrrelalians klween W O  couplings tor WO sizes oi plotled 
as a function of the distance seeparaling Ihem. The cokesponding values of 0, are 0.1 
and 10 (See (3.6)). 'nie characlerislic length of lhe spalial mrrelalions is laken equal 10 
One. 

where KO( P) is a Hdnkel function decreasing as ~ - ' / ~ e - "  at large distance P. For 
short distances, the eigenvalues (4.13) scale approximatively as l /q2  which agrees 
with recent measures of correlations insidc natural images [14,15]. AF before, we 
compute the synaptic correlation function using formula (3.23). We need to define 
the characteristic lcngth L ,  of these correlations which is related to L by 

1 1  - - + -  1 _ -  
LZ L? uc 

(4.15) 

We remark that L,  < L ,  which is similar to thc unidimensional case where x defined 
in (4.6) is lower than 2: the synaptic correlations always decrease faster than the 
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input ones. Thus the correlations between the couplings are given by 

(4.16) 

where the symbol * denotes the convolution product. The right-hand side includes 
two terms. The first one is responsible for the positive centre of the synaptic profile, 
whereas the second one ensures that the flanks will be negative. 

4.3. Discussion 

Such a curve including negative surrounding f lank reminds us strikingly of experi- 
mental measures of synaptic sensitivities ‘in vivo’. Ganglion cells of mammals’ retinas 
may indeed present this centre-on organization with lateral inhibition (see [13,15] 
and references therein). Recent studies based on information theory have recovered 
those synaptic profiles [U]. ’bo  assumptions were made: first, neurons were linear 
units, computing a weighted average of their inputs. Secondly, the synaptic struc- 
ture was derived following a redundancy-reduction principle in presence of intrinsic 
noise inside the input signal. The optimal couplings matrix depends on the ratio 
L: signal/noise which is related to the incident luminosity. For large L, the system 
essentially uses prediction techniques, estimating the activity of each input cell from 
its neighbours. On the contrary, when. C is small, the processing neurons perform a 
smoothing stage aiming at reducing noise by means of the spatial correlations of the 
input signal. 

We remark that there is a strong qualitative analogy between these synaptic pro- 
files varying with C and the couplings correlations plotted on figures 2 and 7 as a 
function of the size of the training set a. It is all the more interesting that this fea- 
ture apparently does not depend on the input space dimension and on the particular 
choice of (reasonable) spatial correlations. 

From a mathematical standpoint, (3.23) is strictly equivalent to the so-calle SPI 
hypothesis (smoothing-prediction interpolation [IS]) but we must emphasize several 
differences concerning the conditions under which they have been derived. First, 
we have computed here correlations inside the synaptic couplings, whereas biologi- 
cal experiments focus on the synaptic weights themselves. Secondly, one must not 
forget that the problem we have concentrated upon is not related to some optimiza- 
tion principle. We are only interested here in storage properties of neural networks. 
Nevertheless, hetero-association enables us to consider this problem as a mapping of 
spatially organized inputs onto corresponding representations within a deeper pro- 
cessing layer. This formulation seems closer to the point of view of optimal encoding 
exposed in [15]. Last of all, neurons we have used in this paper are nonlinear and 
have binary outputs. 

1 J  

5. Conclusion 

In this paper, we have focused on the capacity of a perceptron storing independent 
random patterns ((@, 0”) presenting internal correlations described by a matrix C. 
?he generic term Ci j  gives the correlation between the components i and j Of 
tP .  The matrix is symmetric, positive, and presents the property of rotational and 
translational invariance. 
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We have shown that the computation initiated by Gardner can be reproduced for 
any matrix C, and that the storage properties of the neural network depend only 
on its eigenva~ues. In particular, the critical capacity at zero stability always equals 
aC = 2 regardless of the inner structure of the patterns. Numerical simulations have 
been performed with Gaussian and king patterns and are in excellent agreement with 
the theoretical predictions. 

!I! OKIPT Io obt~it? I geomctrica! hterpretn:ios of Cese a~a!;.fica! r”!cu!a!ims, 
a second problem, conjugated to the initial one, has been introduced. It is indeed 
equivalent to considering self-correlated patterns stored by spherical synaptic vectors 
or patterns without internal correlations stored by synaptic vectors constrained to rely 
on an ellipsoid, the form of which depends only on the initial correlation matrix. 
Qualitative estimates are then possible for any correlation matrix. 

Finally, the correlations between synaptic we.lghts were investigated and genera! 
results d i d  for any matriv C derived. In the particular case of exponentially decreas- 
ing correlations inside one- or two-dimensional input patterns, the couplings profile 
looks like the so-called ‘Mexican hat’ distribution, including a excitatory centre and 
inhibitory flanks. Such an analogy with biological measures concerning centre-on cells 
in mammals’ retina is outstanding but remains unexplained. We have also seen that 
a similar synaptic behaviour may be obtained fiom a simple modified Hebbian rule. 

However, this paper deals only with hetero-associative mapping in feedfoward 
networks. It is of interest to see how the above properties are changed when we 
consider a fully connected neural network and try to store self-correlated patterns 
from an auto-associative standpoint. Preliminary results indicate that the critical 
capacity a, is now an increasing function of the amount of spatial correlations and 
that the nature of couplings is deeply different since weights show ferromagnetic 
means. Detailed results-willbe reported elsewhere. 

- 
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